The Microsoft approach to Zero Trust networking and supporting Azure technologies

What we'll cover today

 \bigcirc Microsoft's enterprise environment

 \bigcirc Zero Trust architecture

 \bigcirc Compatibility with our existing infrastructure

 \bigcirc Modern networking

Microsoft environment today

Cloud networking by the numbers

Alignment of initiatives

Deliver modern, secure connectivity to our internal applications and services

Microsoft enterprise networking 2020

Zero Trust architecture

Zero Trust networking maturity model

Traditional

Advanced

Optimal

Few network-security perimeters and flat, open network

Minimal threat protection, static traffic filtering

Internal traffic is not encrypted

Many ingress and egress cloud microperimeters with some microsegmentation

Cloud native filtering and protection for known threats

User-to-app internal traffic is encrypted

Fully distributed ingress and egress cloud microperimeters and deeper microsegmentation

ML-based threat protection and filtering with context-based signals

All traffic is encrypted

User-connectivity specialization and standardization

Device assignment in Zero Trust networks

Specialized segments

- Administration (Infra)
- Research/dev scenarios
- Facilities/building devices
- Supply chain

Locking down our "open" cloud and datacenter networks

- > Flat or open network enabled virus propagation
- > Allowed for lateral movement from the internet
- > Some networks hidden behind physical devices
- Substantial dependencies on physical devices
- **Datacenter and lab tenants provide a more permissive architecture, which must change**

After

- > Logical zones separate web and data tiers
- > Logical zones created for environment type (DMZ, prod, LAB)
- > Traffic must pass through a firewall or network security group
- Improved controls and telemetry via Azure Features
- New architecture utilizes Azure virtual appliances
- **Tenants struggling with this, as it adds better controls**

Future scenario: leveraging native Azure services

Goals: Migrate hundreds of labs to the cloud Network segmentation (from Corpnet and each other) Enable engineering agility and time-to-market Solution: Leverage cloud native Scalable infrastructure Central edge controls Learnings : Scalability improved Performance improved (lack of force tunnel)

Future scenario: connectivity via Azure virtual WAN

- > Large scale internet VPN for branch offices
- ExpressRoute for datacenters and HQ
- ➢ P2S VPN for mobile workers
- ➤ Local Internet breakout for O365
- Ecosystem of SDWAN and VPN partners
- 5G and Edge Computing are significant investments

Future scenario: Infrastructure as Code

Access all IT Showcase resources at Microsoft.com/ITShowcase

- Implementing a Zero Trust security model at Microsoft
- <u>Microsoft IT Showcase</u>

CSEO Showcase

microsoft.com/itshowcase